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Abstract

Substitution-boxes (S-boxes) are important nonlinear components in block cryp-

tosystem. The nonlinearity plays an important role in the security of cryptosys-

tems. The S-boxes are used to increase the confusion ability of the cipher. Con-

structing S-boxes with a strong cryptographic feature is an important step in

designing block cipher systems. A number of researchers proposed different meth-

ods for the construction of S-boxes based on chaotic maps. In this thesis, the new

method for the construction of an S-box is reviewed. The method is based on com-

pound chaotic system tent-logistic system, which has better chaotic performance

and vast chaotic range than the tent map and logistic map. The main work is

to construct simple and efficient S-box by using linear mapping and tent-logistic

system, which can improve the efficiency of S-boxes. The scheme is implemented

on MATLAB to construct the proposed S-box. The analysis of cryptographic

strength of the constructed S-box is performed by using SAMT tool on MAT-

LAB. Test comparison of constructed S-box with some old S-boxes shows that the

obtained S-box by using the proposed procedure is better than other S-boxes.
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Chapter 1

Introduction

Cryptology is the combination of two Greek words, ‘kryptos’ and ‘logos’, whose

meanings are concealed and words respectively. In 1645, James Howell [1] invented

the term cryptology. It is a branch of science concerned with secure communication

of secret data. There are two primary branches, namely.

• Cryptography

• Cryptanalysis

Cryptography is the branch of cryptology, in which communication takes place

in the secure fashion in such a way that no third party can read or change the

information. Cryptography is used to hide the original information into coded form

so that it cannot be read by anyone who is not intended for it. In cryptography, for

the better understanding usually name of the two parties who share information

with each other are considered as Alice and Bob. There are also some technical

terms that are used for the secure communication between Alice and Bob over

a public network. Alice converts the plaintext into ciphertext and sent it to

Bob. The process of converting the plaintext into ciphertext is called encryption

and process of converting ciphertext back into plaintext is called decryption.

Obviously, there is an algorithm used to alter the plaintext into ciphertext such

an algorithm is known as Encryption algorithm. A ciphertext can not be

1



Introduction 2

understood as long as it is transformed back into the plaintext and the algorithm

that is used to get the plaintext from ciphertext is called Decryption algorithm.

There is a highly sensitive information used in encryption and decryption algorithm

for conversion of plaintext and ciphertext, called key.

Cryptography is further classified in the following two categories:

• Symmetric Key Cryptography

• Public Key Cryptography

Symmetric key cryptography is also called the secret key cryptography. It was 

the only technique used for transmitting messages before the development of public 

key cryptography. In this method, only one key is used for both encryption and 

decryption by the sender and receiver and not known to the adversary (attacker). 

A secret key which can be a number, a word, or just a string of random letters 

is applied to the text or message to change the contents in a particular way. 

This might be as simple as shifting each letter by a number of places in the 

alphabet. As long as both sender and receiver know the secret key, they can 

encrypt and decrypt all messages. This was the only method which was used 

for secure communication until 1976 [2]. Examples of symmetric key encryption 

scheme includes Data Encryption Standard (DES) [3], RC4 [4] and Advanced 

Encryption Standard (AES) [5]. The drawbacks of symmetric key cryptography 

is key sharing and authentication.

To resolve the problems with symmetric key cryptography, Diffie-Helman proposed 

the idea of public key cryptography (PKC) in 1976 [2]. This concept is based on 

the one-way trapdoor function (it is easy to calculate in one direction but difficult 

to compute in the opposite direction without knowing the special information) for 

exchanging the key between two parties. The major drawback of the symmetric 

key is the management of the single key between sender and receiver. That is why 

the communication area needs a secure system that does not have security and 

key management issues.

Public key cryptography depends on two type of keys in which one is used for 

encryption (public key) and the other key is used for decryption (secret key).
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Examples of such a system are ElGamal [6], RSA [7] etc.

A stream cipher is a symmetric key cipher that combines plaintext digits with

a pseudorandom cipher digit stream (keystream). Each plaintext digit with the

corresponding digit in a stream cipher is encrypted one by one to give one digit

to the ciphertext stream.

A block cipher is a symmetric key cryptosystem that encrypts or decrypts one

block of data at a time. IBM published the Data Encryption Standard (DES) in

1970 [3] as a symmetric block cipher. DES can encrypt 64-bit data with a block

size of 8 bytes using a 56-bit key. Due to its limited key size, it could be broken

by brute force in less than 24 hours [3]; for the removal of flaws and improvement

purposes, 2DES and 3DES were developed. In 2001, Vincent Regimen and John

Daemon presents a more difficult algorithm Called Rinjindael, known as Advanced

Encryption Standard [5]. The major components of AES is S-box that provides

the nonlinearrity. It is used in the field of cryptographic that helps to secure the

system. Futher detail is given in the next section.

1.1 S-boxes in Cryptography

In cryptography, an S-box (substitution-box) is a fundamental component of sym-

metric key algorithms which performs substitution. S-boxes are essentially Boolean

vectorial functions given as look-up tables. An S-box takes a small bit block and

replaces it with another bit block. To make decryption effective, this substitution

should be one-to-one. The S-box usually accepts m input bits and translates them

to n output bits. An S-box (m× n) may therefore be viewed as a 2m word n-bit

look up table. An S-box should be constructed to make each output bit strongly

dependent on every input bit.

In block ciphers, they are commonly used to conceal the relationship between the

key and the ciphertext. S-boxes are designed on the basis of Shannon theory of

confusion and diffusion and it is also implemented in substitution-permutation

networks (SPN). SPN is a kind of block cipher that consists of multiple rounds,

each of which includes a substitution, permutation, and key material addition.
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The cipher blocks are created based on the idea of Confusion and Diffusion that is

also implemented in the SPN [8]. Such networks consist essentially of a number of

interconnected mathematical processes. Plaintext along with keys is taken as an

input to obtain ciphertext by following the rounds of S-box. To obtain a plaintext,

the inverse S-box with the same key is used for decryption. For example, DES [3]

and AES [5] are examples of SPN cryptosystems.

1.2 Literature survey

Information security has become a popular issue due to the rapid expansion of 

communication networks and big data applications. Many scholars have suggested 

different methods to secure the information such as information encryption [9], 

watermarking [10], and privacy protection [11]. Cryptography is the fundamental 

technique in information security. Block encryption methods are commonly em-

ployed in symmetric cryptographic systems, such as the DES [3], AES [5] , and 

others. The substitution box is an crucial non-linear component of a block cipher 

scheme.

Considering the significance of S-box in block cipher systems, cryptosystem design-

ers have long attempted to establish S-box with high cryptographic performance. 

There are many methods [12–14] are proposed for the construction of S-boxes. A 

byte conversion process is generated with an S-box to obtain a ciphertext block 

that corresponds to a plaintext block. Each element will be mapped using an S-

box in the sub-byte process. The S-box is used to randomly modify the bit input. 

As a consequence, linear and differential attacks have a hard time for breaking the 

output bit sequence. S-boxes are built by using a variety of methods, including 

the analytical approach [15], algebraic techniques [16], Boolean function [17], and 

triangle groups [18]. S-box is the basic component of AES which is considered to 

be an effective cryptosystem. Since S-box has a major role in cryptography, it is 

essential to construct a cryptogrphically good S-box. Robustness of the S-box is 

improved by using a dynamic system rather than a static system.

The key schedule algorithm of RC4 is used to generate dynamic S-boxes, which is
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generated by changing the secret key in every round [19]. After this, the random

S-box and inverse S-box are designed [20]. Later on, dynamic S-boxes are con-

structed by using chaotic maps [21, 22].

Most of the researchers believe that there is a close link between chaos and cryp-

tography. A chaotic map is a map which contains some kind of chaotic behavior

[14, 22, 23]. Their behavior may be continuous or discrete. Chaotic systems is very

sensitive to initial conditions, so a little change in initial conditions will be able

to design a very different maps from the same dynamical system. Maps are useful

for the cryptograpic purposes therefore they are vastly used in the construction

of S-box. It may be continuous or discrete. Chaotic maps address the discrete

time-dynamic system represented by the equation.

yi+1 = f(yi)

where f is a function that translates the current state yi to the next state yi+1.

Repeated iterations of map f , starting with initial condition yo, produce a sequence

of points

{yi : i = 1, 2, ..., },

known as the orbit of a dynamical system. The nature of chaotic maps are de-

terministic, reproducible, uncorrelated and random like, which can be helpful to

enhance the security of transmission in communication. Different techniques have

been proposed in [13, 16, 24, 25] to construct the S-box on the basis of chaotic

map.

Lambic [24] developed S-box by using chaotic map. In this method, for the con-

struction of the S-box, a discrete chaotic map on the basis of the composition of

permutation is used.

Lambic [25] proposed an algorithm based on chaotic maps to get random bijective
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S-boxes . Lambic’s method has the advantage of low complexity and the ability

to achieve a large key space. A new method for creating cryptographically secure

bijective substitution-boxes based on a 5D hyper-chaotic system was proposed in

[26]. Belazi et al. [27] suggested an S-box approach that is based on the chaotic

logistic-sine map that is both efficient and effective. Cavusoglu [13], used the

chaotic scaled Zhongtang system to generate a robust S-Box. Ullah [28] used the

chaotic system and linear fractional transformation to create S-box. A basic S-box

approach based on the chaotic sine map was presented by Belazi and El-Latif [29].

The S-box is able to generate random integer sequences with highly efficient non-

linearity in the generated values. A new approach for creating cryptographically

secure S-boxes on the basis of 5D hyper-chaotic system is proposed in [26]. A basic

S-box based on the chaotic logistic-sine map, Belazi et al. [27] suggested an effi-

cient S-Box approach. It is the simple and efficient S-box method was introduced

to use the designed scheme in secure color image encryption technique. The major

advantage of the proposed strategy is the dynamic aspect of keys used by chaotic

map to generate strong S-boxes.

Jakimoshi and Koravec [30] have proposed two well known methods to create

a S-box based on chaotic maps, one is logistic and other is exponential. Logistic

chaotic map consists of four step method to generate S-box. This map includes

a proper choice of parameters, discretization for designing a secure cryptosystem.

Tang et al. [21] have proposed the method for designing 8 × 8 S-boxes using 2D

chaotic baker map and analyzed their cryptographic properties. Chaotic baker

map consists of two steps to generate S-box. Afterwards, Chen [31] proposed the

method for designing S-boxes using 3D chaotic baker map. Their method was

better than Tang et al method. Ozkaynak [32] have proposed the method for

designing strong S-boxes using chaotic map. They choose a Lorentz system for

chaotic map and analyzed that system was better for secure communication. An-

other 1D choatic map with a tent-like form was introduced by Zhou [33].

However, the above chaotic S-box construction approaches do not have a high

linear probability (LP) or differential probability (DP) score, and their resis-
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tance to linear and differential attacks was not optimal. Furthermore, the ear-

lier schemes’ S-box creation procedure is extremely difficult and inefficient. Low-

dimensional discrete chaotic systems can generate chaotic sequences more effi-

ciently than high-dimensional continuous-time chaotic systems. Furthermore, sev-

eral researchs demonstrate that discrete systems have a higher complexity than

continuous systems [34, 35]. On the other hand, low-dimensional discrete mapping

chaotic systems have a limited chaotic range and weak chaotic features. If such

chaotic systems are used to construct S-boxes, the crucial space of cryptographic

systems will be reduced, and cryptographic performance will be less than optimal.

To tackle this problem, new discrete chaotic systems with improved performance

must be designed.

To address the previous mentioned shortcomings of existing chaos based S-box

construction methods, a novel and efficient S-box construction approach based on

a new compound chaotic system is proposed by Lu et al. [36]. To improve the

properties of LP and DP in S-boxes and improve the cryptosystem more resistant

to linear analysis and differential attacks. The compound chaotic system TLS that

has a broader chaotic range and higher chaotic performance than previous ones,

making it more appropriate for cryptography applications. As a consequence, the

generated S-box by using TLS has a higher score of LP and DP, so it helps in

resisting the linear and Differential cryptanalysis Attack.

1.3 Thesis Objective

The objective of this thesis is to study the scheme of Lu et al. [36] for the con-

struction of strong S-box. The proposed scheme is based on the compound chaotic

system that is tent-logistic map. It is the combination of two chaotic maps that

are tent map and logistic map. In this dessertation, the S-box is generated by

using compound chaotic system (TLS). The properties of the generated S-box is

performed and the analysis of cryptographic strength of constructed S-box is per-

formed by using the SAMT tool on MATLAB. Test comparison of constructed
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S-box with some old S-boxes shows that the obtained S-box by using the proposed

procedure is better than other S-boxes is discussed in Section 4.3.

1.4 Layout of Thesis

The dessertation is composed as follow:

• Chapter 2 gives the information about the basic definition that helps in the

construction of Boolean function and their properties. It is required for the

analysis of S-box. The properties of S-box are also presented with examples.

• Chapter 3 describes the chaos theory and chaotic maps (tent map, logis-

tic map and tent-logistic map). Some information of S-boxes generated by

chaotic maps is also given in this section.

• Chapter 4 is based on the design algorithm of the S-box, using tent-logistic

map. After that the properties of constructed S-box are checked.

• Chapter 5 gives the conculsion of the thesis.
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Substitution Boxes

Substitution box (S-box) is a bijective function that accepts an n-bit input and

returns an m-bit output. It is the fundamental part of a symmetric encryption that

conducts substitution. The S-box conceals the relationship between the ciphertext

and the key. In this chapter, the definitions and basic concepts of group theory and

algebra are explained that involve the construction and analysis of S-box. Some

important cryptographic properties of S-box are also presented in this chapter that

are regarded as unavoiable for the analysis of a S-box and analysis softwares of

S-box are also defined.

2.1 Mathematical Background

To comprehend the explanation for the creation and success of the S-boxes, some

fundamental principles of group theory are introduced first.

Definition 2.1.1.

Let G be a non empty set and * be a binary operation on G. Then (G, ∗) is called

a Group. If the following properties holds:

1. Closure: For all b, c ∈ G, b ∗ c ∈ G.

2. Associative: For all b, c, d ∈ G (b ∗ c) ∗ d = b ∗ (c ∗ d).

9
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3. Identity: There exist an element e ∈ G such that b ∗ e = e ∗ b = b

4. Inverse: If p ∈ G , then there exist an element p1 ∈ G such that

p ∗ p1 = p1 ∗ p = e

If the group G holds

b ∗ c = b ∗ c

for all b, c ∈ G then G is called an Abelian Group.

Example 2.1.2. Some examples of group and abelian group are given below:

1. Set of integers Z is a group with respect to addition of integers.

2. Set of all invertible matrices of order n×n with ordinary matrix multiplica-

tion forms a group.

3. Set of real number R is a group under addition.

4. The set R and set of integers Z are the examples of abelian groups with

respect to addition.

5. The set of R \ {0} is an example of an abelian group with respect to multi-

plication.

Definition 2.1.3.

A non-empty set R together with two binary operations ‘+’ and ‘∗’ defined on R

is said to be Ring, if the following axioms are satisfied.

1. (R,+) is an abelain group.

2. (R, ∗) is a semi-group.

3. Distributive property of multiplication over addition holds i.e., for all c, d, e ∈

R.

c ∗ (d+ e) = c ∗ d+ c ∗ e and

(c+ d) ∗ e = c ∗ e+ c ∗ e,
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it is usually written as (R,+, ∗) or simply R is a ring.

Example 2.1.4. some examples of ring are given below:

1. Z, Q, R, and C all form ring under usual addition and multiplication.

2. Mn(R) set of all n×n matrices over the ring R is also a ring under addition

and multiplication .

3. If p is a prime number then the set Zp of integer mod p is a ring with respect

to the modulo addition and multiplication of integer.

4. Set of odd integer is not a ring because it does not satisfied closure property

under multiplication.

Definition 2.1.5.

If a set (F,+, ∗) has all of the properties of a Ring (F,+.∗) and (F�{0}, ∗) is an

abelian group, then F is said to be a Field.

Example 2.1.6. Some examples of field are given below.

1. Set of R and C numbers are fields under usual addition and multiplication.

2. Set of Z is not a field as there are no multiplicative inverses in Z.

Recall that a polynomial P (z) of degree n in indeterminate z is an expression of

the form

P (z) = anz
n + anz

n−1 + . . .+ a1z + a0

OR

P (z) =
∑

aiz
i ∀ i = 0, 1, 2, . . . , n,

where ai are its coefficients, zi are its variables. Degree of polynomial is highest

power of z. Further, if a polynomial m(z) with integer coefficients cannot be

factorized as a product of two lower degree polynomials, then it is said to be an

Irreducible polynomial.
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Example 2.1.7. The polynomials z2 + 1, z2 + z are reducible polynomials over

GF (2) and z2 + z+ 1, z3 + z+ 1 are the examples of irreducible polynomials over

GF (2) [37].

Example 2.1.8. Consider the two polynomial (z7 + z2 + 1), (z6 + z4 + z2 + z+ 1)

and an irreducible polynomial m(z) = (z8 + z6 + z5 + z4 + 1), then their product

mod m is :

(z7 + z2 + 1)(z6 + z4 + z2 + z + 1) mod (z8 + z6 + z5 + z4 + 1)

= (z13 + z11 + z9 + z7 + z3 + z + 1) mod (z8 + z6 + z5 + z4 + 1)

= (z5 + z4 + z3 + z) mod (z8 + z6 + z5 + z4 + 1)

For two polynomials a(v) and b(v), it is said that b(v) is divided by a(v) that is

b(v)/a(v) when r(v) = 0. Mathematically,

a(v) = q(v)b(v) + r(v)

There are 30 irreducible polynomials [37] of degree 8 with coefficients in GF (28).

Irreducible polynomials are essential for polynomial multiplication in GF (qn) when

it is performed over modulo m on an irreducible polynomial.

Definition 2.1.9.

The Galois Field or finite field, is a field whose order is a prime power qn. It is

represented by GF (qn). The elements of the Galois Field GF (qn) elements are

defined as [38]:

GF (qn) = (0, 1, 2, . . . , q − 1) ∪ (q, q + 1, q + 2, q + 3, . . . , q + q − 1)

∪ (q2, q2 + 1, q2 + 2, . . . , q2 + q + 1) ∪ . . .

∪ (qn−1, qn−1 + 1, qn−1 + 2, . . . , qn−1q − 1)

where n ∈ Z+. The order of the field is determined by qn, and the characteristic
of the field is defined by q. Each factor has a polynomial degree of at most n− 1.

From a cryptographic standpoint, one concentrate on the following cases:
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• GF (q), n = 1

• GF (2n), q = 2

All polynomials of degree less than n with coefficients from GF (q) are the elements

of GF (qn).

The finite field GF (28) has 256 elements and is used in the advanced encryption

standard (AES) [5], which was developed by using a fixed irreducible polynomial

m(v) = v8 + v4 + v3 + v + 1.

Each element of GF (28) has degree less than 8. In GF (28) the polynomial multi-

plication is reduced by modulo m(v).

Table 2.1: Elements of Finite Field GF (28)

Decimal Polynomials Binary Hexadecimal
0 0 00000000 00
1 1 00000001 01
2 v 00000010 02
3 v + 1 00000011 03
4 v2 00000100 04
5 v2 + 1 00000101 05
6 v2 + v 00000110 06
7 v2 + v + 1 00000111 07
8 v3 00001000 08
9 v3 + 1 00001001 09
10 v3 + v 00001010 0A
. . . .
. . . .
. . . .

255 v7 + v6 + v5 + v4 + v3 + v2 + v + 1 11111111 FF

The elements of GF (28) are equivalently represented by an 8-bit binary numbers,
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2-digit hexadecimal numbers, or a positive integers between 0 and 255 inclusively.

The polynomial and binary representations of the finite field GF (28) are given in

Table 2.1.

2.1.1 Addition and Subtraction in GF

In GF , the procedure of addition is very simple. If h1(y) and g1(y) any two

polynomials in GF (pn) and f1(y) = h1(y) + g1(y) with the coefficients of h1(y),

g1(y) and f1(y) are C = cn−1, cn−2, . . . , c1, c0, D = dn−1, dn−2, . . . , d1, d0 and E =

en−1, en−2, . . . , e1, e0 respectively. Let ck, dk and ek are the coefficients of h1(y),

h1(y) and g1(y) respectively then

ek = ck + dk mod p where, k = 0, 1, . . . , n− 1

Likewise if f1(y) = h1(y)− g1(y) is given as:

ck = ak − bk mod p

where k ∈ {0, 1, 2, . . . , n− 1}

Remember that in GF (2n) addition can be done using “XOR” operation.

Example 2.1.10. Suppose two polynomials f(y) and g(y) in GF (24). The sum

f(y) + g(y) under the mod m(y) where f(y) = y3 + y2 + y + 1, g(y) = y2 + 1 and

m(y) = y4 + y3 + y + 1, then

f(y) + g(y) = (y3 + y2 + y + 1) + (y2 + 1)

f(y) + g(y) = (y3 + y) mod (y4 + y3 + y + 1)

Alternatively, from binary number system

f(y) = y3 + y2 + y + 1 = (1111)2

g(y) = y2 + 1 = (0101)2

f(y) + g(y) = 1111⊕ 0101

f(y) + g(y) = 1010 = y3 + y
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2.1.2 Multiplication and Multiplicative Inverse

In Galois Field, multiplication involves more attention. Suppose f1(z) and g1(z)

be any two polynomials in GF (pn) and suppose m1(z) be irreducible polynomial.

The degree of product of f1(z) and g1(z) should be less than n in GF (pn). If h1(z)

represent the product of f1(z) and g1(z) then

h1(z) = f1(z).g1(z) mod p.

Suppose a1(z) represent the multiplicative inverse of f1(z) then

f1(z).a1(z) = 1 mod p.

Note that in evaluating the multiplication of any two polynomials and their in-

verses need both reducing polynomial m1(z) and coefficients in modulo p. The

most feasible method to calculate the multiplicative inverse of polynomials is Ex-

tended Euclidean Algorithm.

Example 2.1.11. Consider f1(z) = z2 + 1 and g1(z) = z2 + z + 1 are irreducible

polynomial with m1(z) = z3 + z2 + 1 in GF (23). Then we have

f1(z).g1(z) = (z2 + 1).(z2 + z + 1) mod (z3 + z2 + 1)

= z4 + z3 + z2 + z2 + z + 1 mod (z3 + z2 + 1)

= z4 + z3 + 2z2 + z + 1 mod (z3 + z2 + 1)

= 1 mod (z3 + z2 + 1).

Definition 2.1.12.

A Primitive Polynomial is an irreducible polynomial of degree n over GF (q)

that divides any a(x) = xm + 1 where m = qn − 1, but not any a(x) divided with

smaller m [39].



Substitution Boxes 16

Example 2.1.13. In GF (23), the polynomial m(z) = z3 + z + 1 with a degree

3 is primitive polynomial. If there is a smallest positive integer t = 7 such that

m(z) = z3 + z + 1 divides zt − 1 = z7 + 1 as

z7 + 1 = (z3 + z + 1)(z4 + z2 + z + 1)

if k is the root of z3 + z+ 1, then k7 = 1. Table 2.2 lists the powers of k in GF (23)

in the form of polynomials :

Table 2.2: Roots of primitive polynomial in GF (23)

Decimal Roots Polynomials
0 k0 1
1 k1 k
2 k2 k2

3 k3 k + 1
4 k4 k2 + k
5 k5 k2 + k + 1
6 k6 k2 + 1
7 k7 1

2.2 Boolean Function

A function f : GF (2n) → GF (2) is said to be a Boolean function if it accepts

the n tuples {r1, r2, . . . , rn} ∈ GF (2n) as input and produces only one of the

two output bits {0, 1} ∈ GF (2) [40]. A Boolean function describes how Boolean

output values can be determined by using logical calculations. Boolean function

has two main possibilities one is true (on/ ones) and the second is false (off/ zero).

These features are also beneficial in the construction of digital computer circuits,

integrated circuits, and electronic circuits. Boolean functions are also extensively

used in cryptography to design substitution boxes (S-boxes).

Example 2.2.1. For a mapping GF (2n) to GF (2), for n = 2

f(r1, r2, r3) = r1 ⊕ r2.r3,
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with input bits r1, r2 and r3 in Table 2.3.

Table 2.3: Truth table of Boolean function

r1 r2 r3 r2.r3 f = r1 ⊕ r2.r3

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 0

A Boolean function f : GF (2n)→ GF (2) can be expressed in two distinct ways.

• Truth Table (TT)

• Algebraic Normal Form (ANF)

Truth Table (TT):

A tabular representation of the possible outcomes of a Boolean function, with the

first two columns representing possible inputs and the last column displaying the

result of executed function. Boolean function f can be represented as a binary

vector of size (2n × 1), with entries f(r) indexed by the vectors r ∈ GF (2n).

Example 2.2.2. Consider the Boolean function f = XOR of two variables r1

and r2 . The TT of n = 2 is shown in Table 2.4.

Table 2.4: Truth Table for Boolean function (XOR)

r1 r2 r1 ⊕ r2

0 0 0
0 1 1
1 0 1
1 1 0

The Boolean function given as above can be written as f = d0110eT .

Algebraic Normal Form (ANF):

ANF of boolean function is the most commonly used representation in cryptogra-

phy. An ANF of a Boolean function f : GF (2n) → GF (2) is a polynomial of the
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following form [41];

f(r1, r2, ...rn) =a0 ⊕ r1a1 ⊕ r2a2 ⊕ . . .⊕ rnan⊕

r1r2a1,2 ⊕ . . .⊕ rn−1rnan−1,n ⊕ . . .

r1r2 . . . rna1,2,...,n,

where a1, a2 . . . a1,2,...,n ∈ {0, 1}n. Boolean functions are extensively used due to

their outstanding properties. This ANF plays an essential role in the study of

S-boxes and Boolean functions.

Example 2.2.3. Consider the two variables r1 and r2 and define the Boolean

function “OR” on them. The ANF of ‘OR’ Boolean function is represented as:

g(r1, r2) = r1 ⊕ r2 ⊕ r1r2.

It is written as:

Table 2.5: Truth Table of logical OR function

r1 r2 r1 ∨ r2

0 0 0
0 1 1
1 0 1
1 1 1

2.2.1 Application of Boolean Function in S-boxes

Boolean functions are the important element of cryptography in constructing sub-

stitution boxes, therefore it is very critical that such crytographic characteristics

are studied carefully. It is used for making difficult for adversaries to perform

cryptanalysis [42]. The function S defined as:

S : GF (2n) −→ GF (2m),

takes n bits as input and outputs m bits. S-box can be defined as

S(v) = (f1(v), f2(v), . . . , fm(v),
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Table 2.6: Truth table of GF (24)

u1 u2 u3 u4 u1u2u3 u2u3u4 f(αi)
1 1 1 1 1 1 1
1 1 1 0 1 0 0
1 1 0 1 0 0 1
1 1 0 0 0 0 1
1 0 1 1 0 0 1
1 0 1 0 0 0 1
1 0 0 1 0 0 1
1 0 0 0 0 0 1
0 1 1 1 0 1 1
0 1 1 0 0 0 0
0 1 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0

where fi (i = 1, 2, . . . ,m) are corresponding m-variables of Boolean functions. The

Boolean functions are supposed to be the important components of S-boxes with

the corresponding m vector.

Definition 2.2.4.

The sequence defined as {(−1)f(α0), (−1)f(α1)), . . . , (−1)f(α2n−1)} is known as Se-

quence of Boolean Function. A balanced sequence has an equal number of

ones and minus ones (actually zero), while an unbalanced sequence has an un-

equal number of ones and minus ones.

Example 2.2.5. Consider the Boolean function, which has four input bits u1, u2, u3

and u4.

f(u1, u2, u3, u4) = u1u2u3 ⊕ u2u3u4 ⊕ u1

andf(u1, u2, u3, u4) is calculated in Table 2.6.

The sequence of the Boolean function can be written as,
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{(−1)f(α0), (−1)f(α1), (−1)f(α2), (−1)f(α3), (−1)f(α4), (−1)f(α5), (−1)f(α6),

(−1)f(α7), (−1)f(α8), (−1)f(α9), (−1)f(α10), (−1)f(α11), (−1)f(α12), (−1)f(α13),

(−1)f(α14), (−1)f(α15)}

={(−1)1, (−1)0, (−1)1, (−1)1, (−1)1, (−1)1, (−1)1, (−1)1, (−1)1,

(−1)0, (−1)0, (−1)0, (−1)0, (−1)0, (−1)0, (−1)0}

={−1, 1,−1,−1,−1,−1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 1}

Hence, the sequence of the Boolean function is balanced.

Definition 2.2.6.

A Boolean function f : GF (2n) −→ GF (2) is said to be Linear if and only if it

can be expressed in the linear combination as

f(x1, x2, . . . , xn) = c1x1 ⊕ c2x2 ⊕ . . .⊕ cnxn,

where ⊕ is the XOR operation [43] and the linear combination of two Boolean

functions f(x) and g(x) is define as

(f ⊕ g)x = f(x)⊕ g(x).

There are exactly 2n linear functions among the 22n boolean functions of n vari-

ables.

Definition 2.2.7.

A mapping of Boolean function f : GF (2n) −→ GF (2) is said to be Affine

Function, if the output of f has a linear combination along with constant [40],

[44]. It can be described as follows:

f(x1, x2, . . . , xn) = c1x1 ⊕ c2x2 ⊕ . . .⊕ cnxn ⊕ c0.

For an Affine Cipher a Boolean function over modulo d is used. It is a basic
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Table 2.7: Conversion in affine cipher

A 0 N 13
B 1 O 14
C 2 P 15
D 3 Q 16
E 4 R 17
F 5 S 18
G 6 T 19
H 7 U 20
I 8 V 21
J 9 W 22
K 10 X 23
L 11 Y 24
M 12 Z 25

substitution cipher that is easy to crack due to the lack of security. This cipher

performs addition and multiplication using the function given below

f(x) = (Ax⊕ C) mod d.

The encryption key is made up of the letters A and C. The key will be added to an

input, and then the modulus d is calculated. The following English alphabets are

assigned to the numbers for encryption Table 2.7. For the explanation of Affine

cipher example is given here.

Example 2.2.8. From the Table 2.7 to encrypt the message “LEO“ using the key

K = (5, 2) mod 26. The encryption function is

f(x) = (5x⊕ 2) mod 26

then,

L = f(11) = 5 mod 26 = F,

E = f(4) = 22 mod 26 = W,

O = f(14) = 20 mod 26 = U,
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the obtained ciphertext is ”FWU”.

The decryption function is

x = [f(x)− 2] ∗ 5−1 mod 26,

5−1 = −5 mod 26,

F = −5 ∗ [5− 2] mod 26 = 11 = L,

W = −5 ∗ [22− 2] mod 26 = 4 = E,

U = −5 ∗ [20− 2] mod 26 = 14 = O,

hence the obtained plaintext is ”LEO”.

Definition 2.2.9.

The number of non-zero digits in a binary sequence is called Hamming Weight.

It is represented by H(w) or Hwt, where w ∈ GF (2n)

Example 2.2.10. For a sequence w(01100111) the number of zeroes is three and

the number of ones is 5, The Hamming weight is define as

w(01100111) = H(01100111) = 5

the Hamming weight is 5

Definition 2.2.11.

Hamming Distance can be calculated using two Boolean function h(v) and k(v)

as;

h(v), k(v) : GF (2n) −→ GF (2),

is defined as [45]

d(h, k) = H(h(v)⊕ k(v)),

h(v)⊕ k(v) = h(v0)⊕ k(v0)⊕ h(v1)⊕ k(v1)⊕ ...⊕ h(v2n−1)⊕ k(v2n−1),
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where

v = (v0, v1, . . . , v2n−1) ∈ GF (2n).

It is take as the number of inputs where the functions how many bits need to be

changed in truth table of h to get k [44].

Example 2.2.12. Consider the two Boolean function, with input bits r1, r2 and

r3

h(r) = r1r2r3 and k(r) = r1 ⊕ r2 ⊕ r3.

The Hamming distance of these Boolean functions is

d(h, k) = H(h(r)⊕ k(r))

d(h, k) = H(r1r2r3 ⊕ (r1 ⊕ r2 ⊕ r3))

Table 2.8: Hamming distance of Boolean functions

r1 r2 r3 h = r1r2r3 k = r1 ⊕ r2 ⊕ r3 h(v)⊕ k(v)
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 0 0 0
1 0 0 0 1 1
1 0 1 0 0 0
1 1 0 0 0 0
1 1 1 1 1 0

The Hamming distance of d(h, k) = 3.

Example 2.2.13. For two simple Boolean functions h(r) and k(r) is defined as;

h(r) = 0 1 0 1 0 1 1 1

k(r) = 0 1 1 0 1 1 1 0,

then the Boolean function (XOR) between them is;

h(r)⊕ k(r) = 0 0 1 1 1 0 0 1
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H(h(r), k(r)) = 4

so, the Hamming distance d(h, k) = 4

Definition 2.2.14.

The correlation measurement between the Boolean function f and all the linear

combinations is called the Walsh Transform. The Boolean function [46] of the

Walsh transform is defined as:

WHTg(b) = (−1)g(y)⊕b.y ∀ b, y ∈ GF (2n)

where g is the Boolean function, b.y represents the dot product of b and y, and ⊕

is the (XOR) of g and b.y.

The Hamming distance is also used to measure the similarity of Boolean functions.

Hamming distance is determine by counting the bits in the truth table of Boolean

functions which are distinct, while the unintended distance is the sum by which

this distance varies from expectation.

The predicted distanced of boolean function with affine function is define as:

ED =
2n

2

The discrepancy between these two values is referred to as unexpected distance.

It is calculated as

unexpected distance = Hamming distance− ED

Example 2.2.15. Consider all affine and Boolean functions

g : GF (23) −→ GF (2),

then a TT for affine function is given in the Table 2.9.

Consider a Boolean function g = [1 0 0 1 1 0 0 1]. The predicted
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Table 2.9: Calculation of hamming distances and unexpected distances of
g = [1 0 0 1 1 0 0 1]

Affine
function

Truth
table
= h

g ⊕ h Hamming
distance

Expected
distance

Unexpected
distance

1 1 1 1 1 1 1 1 1 0 1 1 0 01 1 0 4 4 0
y0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 4 4 0
y1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 4 4 0
y2 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 4 4 0
y0 + y1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 8 4 4
y0 + y2 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 1 4 4 0
y1 + y2 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 4 4 0
y0 + y1 + y2 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 4 4 0

distances can be determined with respect to all affine functions in truth table by

using the formula

ED =
23

2
=

8

2
= 4.

The discreparity between Hamming distance and ED to measure unexpected dis-

tances (g). The following table shows the calculated values. The Walsh transform

of g is the maximum absolute value of all unexpected distances i.e., WHTg = 4.

2.3 Substition Boxes

Consider a function G : Vn2 −→ Vm2 for some positive integers n and m where V2 is

the finite field with two elements. Such functions G with given Boolean functions

g1, g2, . . . , gm are defined as

G(v) = (g1(v), g2(v), . . . , gm(v))

at every v ∈ Vn2 , called the coordinate functions of F . Such (n×m) functions are

called S-boxes.

Thus a function S : GF (2n) −→ GF (2m) which takes n-bits as input to produce

m-bits as output is called an (n×m) S-box, defined as

v = S(u) = (g1(u), g2(u), . . . , gm(u)) ∈ GF (2m), ∀ u ∈ GF (2n)
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Example 2.3.1. Consider a 4× 4 S-box, which takes four input bits, and returns

four output bits. The elements of Galois field GF (24) is given in the first column,

while the elements of 4 × 4 S-box in vector from is shown in second column of

Table 2.10.

Table 2.10: Boolean function in 4× 4 S-box

GF (24) S − box g1 g2 g3 g4

0 9 1 0 0 1
1 13 1 0 1 1
2 10 0 1 0 1
3 15 1 1 1 1
4 11 1 1 0 1
5 14 0 1 1 1
6 7 1 1 1 0
7 3 1 1 0 0
8 12 0 0 1 1
9 8 0 0 0 1
10 6 0 1 1 0
11 2 0 1 0 0
12 4 0 0 1 0
13 1 1 0 0 0
14 0 0 0 0 0
15 5 1 0 1 0

The entries of an S-box are in binary form in Table 2.10, where each column

represents a Boolean function gi for 1 ≤ i ≤ 4 of S-box. The properties of an

S-box is determined by the Boolean functions that were earlier used to create it.

2.3.1 Essential Characteristics of S-box

S-boxes are made up of highly nonlinear Boolean functions. Without them, at-

tackers might easily hack the system. There are two primary reason that tell the

significant and the necessary characteristics of S-box design.

1. Designing new Ciphers

The S-box design is the most important part for the design of a new cipher

schemes as it is the sole nonlinear element of the system. This is essential
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component which depends on cipher strength. As cryptography advances,

hackers also devise new attacking methods, so the design of S-box should be

secured in advance to ensure the security of ciphers .

2. S-box Development Design for private use

Trap-door are being used by adversaries to generate keys for certain ciphers

such as AES [5], so every organisation, especially governments, wants a se-

cure system that is only applicable to their organisation with an extra secu-

rity layer, which is possible only if they design their own individual S-boxes

for their specific system.

2.4 Classification of S-boxes

There are three sub classifications of S-boxes.

1. Straight S-box

A straight S-box takes input and gives output of the same size. The well

known AES [5] is an example of such S-box. This is the easiest and most

common form of S-box design.

2. Compressed S-box

S-box which takes more input bits/bytes but returns less output bits/bytes.

DES is a good example of this type of S-box in which each block takes in 6

bits and outputs 4 bits block.

3. Expanded S-box

This S-box takes in less input bits and gives back more bits. One can con-

struct such S-box by duplicating some of the output or input bits.

2.4.1 Properties of Strong S-box

Important properties of S-box are given below.
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• S-box is balanced.

• S-box has high nonlinearity.

• All linear combinations of S-box are bent.

• All entries in the XOR table are 0 or 1.

• S-box satisfies bit independence criteria.

• S-box satisfies strict avalanche criteria.

2.4.2 Cryptographic Properties of Strong S-box

S-box satisfy the necessary properties for a cryptographically strong S-box. Since

substitution boxes are an important part of many cryptosystem.

1. Balanced

A mapping of Boolean function S : GF (2n) −→ GF (2) is said to be balanced

if zero/one has equal in number in the truth table.

Example 2.4.1. A comparison of balanced and unbalanced functions is

provided in Table 2.11.

Table 2.11: Truth table of XOR and AND functions

r1 r2 r3 S1 = r1 ⊕ r2 ⊕ r3 S2 = r1 · r2 · r3

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Consider the Boolean functions XOR and AND, which are defined as follows:

S1 = ⊕ : GF (23) −→ GF (2),
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S2 = · : GF (23) −→ GF (2).

The following truth table is defined for three variables r1, r2 and r3. Fourth

column shows the “XOR” function which has equal number of ones and zeros

so, it is balanced while the fifth column represents the “AND” function which

is not balanced as it has more zero’s then onces.

2. Bijective:

A mapping of Boolean function S : GF (2n) −→ GF (2) is called bijective iff

all linear combinations of columns are balanced. A method [21] is introduced

to verify the bijective property of a (n × n) S-box, which states that “The

bijective property is fulfilled if for the Boolean functions fi(for1 ≤ i ≤ n) of

S-box following condition holds.

Hwt(
n∑
i=1

cifi) = 2n−1 (2.1)

Where ci ∈ {0, 1} for (c1, c2, ...., cn) 6= (0, 0, ...., 0) and Hwt is the Hamming

weight” [47].

Equation (2.1) ensures that all Boolean functions fi and their combinations

are balanced.

Example 2.4.2. Consider the (4 × 4) S-box and demonstrate that it is

bijective.

inputs:[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

S-box:[9 13 10 15 11 14 7 3 12 8 6 2 4 1 0 5]t

where each elements of S-box can be represented as:

S =


f1 : 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 1

f2 : 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0

f3 : 1 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0

f4 : 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0
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That is, S(0000) = 1 1 1 1, S(0001) = 1 0 1 1, ......., S(1111) = 1 0 0 0. Since S-

box is used both encryption and decryption, it should be a bijective mapping.

This is to make sure that every S-box also has an inverse S-box.

3. Nonlinearity

Nonlinearity of a Boolean function (NL(g)) [48] g(v) : GF (2n) −→ GF (2) is

defined as the minimum Hamming distance of g from any of its n-variable

affine functions.

NL(g) = min d(g, h).

Example 2.4.3. Suppose r1 and r2 are input bits and g(r) is a Boolean

function: g(r) = r1 ⊕ r2

Table 2.12: Truth table

r1 r2 g(r) 0 r1 r2 r1 ⊕ r2 g(r)⊕ 0 g(r)⊕ r1 g(r)⊕ r2 g(r)⊕ (r1 ⊕ r2)
0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 1 1 0 0
1 0 1 0 1 0 1 1 0 1 0
1 1 1 0 1 1 0 1 0 0 1

Where 0, r1, r2, r1 ⊕ r2 are the possible linear function of r1 and r2 and

d1(g(r), 0) = 3, d2(g(r), r1) = 1, d3(g(r), r2) = 1, d4(g(r), r1 ⊕ r2) = 1

So,

Nf = min(d1, d2, d3, d4) = 1

4. Bent Function

S-Boxes must be made up of Boolean functions that are strongly nonlinear.

Different Boolean functions with great nonlinearity value can be define, but

bent functions are a special kind of Boolean function with the highest non-

linearity.

Bent functions are defined by walsh transfrom as:

f(s) =
1√
2

∑
u∈GF (2n)

(−1)f(u)⊕s·u,
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where f(u) is the Boolean function and s.u is the dot product and u ∈ GF (2).

Thus a Boolean function f which contain to its maximum nonlinearity is

called bent function [42].

Example 2.4.4. By maximum nonlinearity criterion, it is known that in

GF (22), the function with nonlinearity 1 is bent.

NL(f) = 2n − 2
n
2
−1

22−1 − 2
2
2
−1 = 2− 1 = 1

Clearly, bent functions are not linear or affine, but they are a form of Boolean

functions with the highest Strict Avalanche Criterion (SAC) [49] and Bit

Independence Criterion (BIC) [47].

5. Dynamic Distance

Dynamic Distance (DD) of order j for a Boolean function [50].

f : GF (2n) −→ GF (2)

is defined as

DDj(f) = max
1≤wt(d)≤j

1

2

∣∣∣∣∣2n−1 −
∑

x∈GF (2n)

f(x)⊕ d(f ⊕ x)

∣∣∣∣∣
where f is the Boolean function, and d(f ⊕ x) shows the Hamming distance

between them d ∈ {0, 1}n. It provides a measure for other dynamic proper-

ties such as SAC which will be satisfied if DD has small integral value and

closer to zero.

Example 2.4.5. For calculating Dynamic distances DD1, we use a special

matrix d ∈ GF (2n) with Hamming weight 1 for each entry.

Take the example of S-box present in Table 2.10 in GF (24) −→ GF (24), and

matrix d define as:
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d =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


The DD of Boolean functions that have been calculated are [4 4 4 2]

S-box mapping GF (28) −→ GF (28) of AES, then d is expressed as:

d =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0



For S(u) = v, first calculate u ⊕ d for each entry of all Boolean functions

with each entry of this matrix d, then calculate

f(u)⊕ f(u⊕ d)

Finally, it can help to determine the DD for S-box.

6. Correlation Immunity

The correlation immunity [51] (CI) of a Boolean function denotes the scale

of the independence between the linear combination of input bits and out-

put bits. The relationship between the Walsh transform and the Hamming

weight of its inputs can be used to determine its functional order. When

WHTf (β) = 0 , and 1 6 H(w) 6 p, a Boolean function is said to have

correlation immunity.
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7. Absolute Indicator and Sum of Square Indicator

With respect to a point c , the derivative of a Boolean function mapping

f : GF (2n) −→ GF (2) is defined as:

Df (c) = f(x)⊕ f(x⊕ c).

Auto-correlation (AC) of a boolean function f can be defined on all b ∈

GF (2n) using the above defined derivative:

4 = Σ(−1)f(x)⊕f(x⊕c) where x ∈ GF (2n)

The absolute Boolean function f indicator is defined as the maximum abso-

lute AC value excluding the origin that can be expressed as [51].

4f = max
c∈GF (2n),c6=0

| 4f (b)|

The Sum of square indicator [51] of Boolean function f is also derived from

AC and can be expressed as:

σf =
∑

c∈GF (2n)

(4f (c))
2

8. Algebric Immunity

An Algebric Immunity of two Boolean functions f(v) and h(v) is defined as

the lowest degree of non-zero function h such that either

(f + 1)h = 0 or f · h = 0

where a function h for which f · h = 0 is called annihilator of f [48].

Example 2.4.6. Take the following two Boolean functions with input bits

v1 and v2.

f(v) = v1 + v1v2 and h(v) = v2

for the algebric immunity;
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Table 2.13: Truth table of Algebric immunity

v1 v2 f(v) f · h (f + 1) (f + 1) · h
0 0 0 0 1 0
0 1 0 0 1 1
1 0 1 0 0 0
1 1 0 0 1 1

According to the Table 2.13, f · h = 0 and (f + 1) · h = 0.

9. Algebraic Degree

An algebraic degree is linked with the nonlinearity measures [48]. “For a

Boolean function f : GF (2n) −→ GF (2), it is defined as the number of vari-

ables in highest order term with non-zero coefficients and can be expressed

as

deg(h) = n− 1.

Higher algebraic degree is considered better than the lower.”

10. Fixed and Opposite Fixed Points

Take an S-box S : GF (2n) −→ GF (2m) and for u ∈ GF (2n). A point is

called fixed point of S-box if

S(u) = u

A point is said to be an opposite fixed point of an S-box if

S(u) = u′

and u′ is the compliment of u.

S-boxes without fixed and opposite fixed points are preferable to those with

fixed and opposite fixed points.

Example 2.4.7. Take (2× 2) S-box with two Boolean functions.

There is a ‘2’ element that is a fixed point of S-box as shown in Table 2.14.

Example 2.4.8. A (2× 2) S-box with two Boolean functions.
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Table 2.14: S-box of fixed point

GF (2) Binary format of GF (2) S − box Binary format of S − box
0 00 1 01
1 01 3 11
2 10 2 10
3 11 0 00

Table 2.15: S-box of opposite fixed points

GF (2) Binary format of GF (2) S − box Binary format of S − box
0 00 1 01
1 01 2 10
2 10 3 11
3 11 0 00

and there is ‘1’ opposite fixed point of S-box as shown in Table 2.15.

Any S-box that does not have fixed and opposite fixed points is thought to

be good against differential cryptanalysis attack in comparison to those who

has fixed point and opposite fixed points.

2.5 Software Tools in the Analysis of S-box

To check the properties of S-box, some different tools are available such as Boolfun

Package in R, VBF, SageMath, SET and SAMT are describe below.

1. Boolfun Package in R

R works on different windows like UNIX and Mac OS platforms but the

standard version of R do not support the Boolean functions. It is possible

to load a package name Boolfun [52], which gives functionality realted

to cryptographic analysis of Boolean functions. R is the free open source

Mathematical software used for computing statistics.

2. VBF

VBF is abbreviation of Vector Boolean Function library. This tool is used

for the analysis of cryptographic properties of S-boxes. It is introduced by

Alverez - Cubero and Zuffiria [53].
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3. SageMath

SageMath library [48] is a free open source Mathematics tool which con-

tains a module called Boolean functions and an S-box. From this tool,

the algebraic properties and various cryptographic properties related to lin-

ear approximation matrix and difference distribution table for S-boxes and

Boolean functions can be checked.

4. S-box Evaluation Tool (SET)

Evaluation of cryptographic properties of Boolean function and S-boxes is

presented by Picek [54] and his team. It is also a free open source mathe-

matics tool which is easy to use. It works in VS (visual studio).

5. SAMT

SAMT [55] is another tool for the evaluation of cryptographic properties of

Boolean function and S-box. It works on MATLAB.



Chapter 3

Chaos Theory

Chaos theory is the branch of mathematics concered with the behaviour of dynamic

systems. The term chaos refers to the science of unexpected events. It involves dy-

namic systems with nonlinear and unpredictable behavior. Chaos theory provides

a method for dealing with unpredictable behavior such as turbulence, weather,

stock market and so on. Chaos theory, properties (characteristic) of chaotic sys-

tem, Lyapunov exponents and Bifurcation diagram are discussed in Section 3.1.

Section 3.2 is about the chaos based cryptography. Section 3.3 is based on the

chaotic map. Some chaotic maps are also explained in this section. The role of

approximate entropy for the chaotic behaviour analysis is given in Section 3.4.

3.1 Chaos Theory

Chaos is derived from a Greek word ‘Xaos’, with the meaning as a state without

order or predictability. Chaos theory was developed in the 1970 [56] and used in

a scientific fields [57] such as physics, mathematics, engineering, and biology etc.

The term chaos refers to the science of unexpected events. It study of the temporal

development of the non-linear system is known as non-linear dynamics. A basic

study of the mathematics and the random behaviour of the chaotic system gives

a way to comprehend the importance of this theory in relation to the complexity

of social processes. In 1963 Edward Lorenz [58] investigated chaos theory and

37
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presented a basic mathematical model to predict a weather. It is the first numerical

method for identifying chaos in a dynamical system. A dynamic system is one in

which the function is reliant on a time-dependent point in a geometrical space,

such as a moving pendulum or water flowing through a pipe. In addition, chaotic

system is highly sensitive to the initial parameters. Initial condition sensitivity

means that every aspect of the chaotic system is very near to the other trajectory

points. As a result, an insignificant change in the initial conditions can lead to a

big variation in behaviour. The Butterfly effect [59] is defined as the sensitivity

to the initial condition. In other words, chaos theory is the science of unexpected

events.

3.1.1 Characteristics of Chaotic System

The phenomenon of chaos can be found in almost all nonlinear deterministic sys-

tems. Chaos appears to exist when there is a continuous and disorganized progres-

sion in long-term mathematical function.. Chaotic systems include the following

characteristics:

• Apparently random but entirely deterministic behaviour

The chaotic system behaviour appears random but is, in fact, totally pre-

dictable. Therefore, if chaotic system iterate with the same initial conditions

it gives the same output value set. Chaotic systems are also dynamic sys-

tems defined by differential equations (or iterative mappings) where every

state rely on the previous state

dyj
dt

= Fj(y1, y2, ..., yn) j = 1, 2, ..., n

yj are states depending on time.

• Sensitivity dependence on the initial conditions

Chaotic systems evolve completely different when a small change occur in

the original state throughout time.
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• Unpredictable

In chaotic system, one can understand the initial state of the chaotic system

it doesn’t mean that anyone can predict the next state of the system. In

other words, for long term prediction of the future states is hard to obtain.

3.1.2 Lyapunov Exponents (LE)

The term ‘Lyapunov Exponent’ (LE) [60] has been widely used in the study of

dynamical systems. The degree of divergence between two close trajectories of a

dynamical system is described by LE. A positive LE indicates that, regardless of

how close the two trajectories are, their divergence increases with each iteration,

eventually causing them to be completely different. As a result, the LE of a chaotic

dynamical system is positive. In a multidimensional dynamical system, there may

be more than one LE. If it has more than one positive LE, its close trajectories

exponentially diverge in several dimensions. This phenomenon is known as hy-

perchaotic behavior. A dynamical system with hyperchaotic behaviour performs

extremely well in terms of chaos and its outputs are difficult to predict. LE can

be defined as:

λ = lim
n−→∞

1

n

∞∑
n=1

ln|g′(yi)|

where g(yi) is the function of chaotic system. The Lyapunov exponent has three

dynamics cases.

1. If the orbit attracts toward a stable point its mean that all lyapunov expo-

nents are less than zero.

2. When the LE is zero, the system is neutrally stable. such system are con-

servative and in a steady state mode. They exhibit Lyapunove stability.

3. If the system is chaotic, then all the Lyapunov exponents are greater than

zero.
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3.1.3 Bifurcation Diagram

When the control parameter is altered, a bifurcation happens, which is a period-

doubling, or a change from an M-point attractor to a 2M-point attractor. A

bifurcation diagram is a graphic representation of the sequence of period-doublings

that occurs as control parameter (δ) increases. The bifurcation diagram of any

chaotic map is illustrated in Figure 3.1, with δ on the horizontal axis. Before

plotting sequential values of y over a few hundred iterations, the system is allowed

to settle down for each value of δ.

Figure 3.1: Bifurcation diagram

It is clear from the Figure 3.1, when δ ≤ 1 every point are plotted at zero. So for

δ ≤ 1 there is only one point attractor. Now when δ ∈ (1, 3), there is still one

point attractors but the attracted value of y increases as δ increases. Bifurcation

occurs at δ = 3, 3.45, 3.54, 3.564, 3.569, (approximately) etc. Until just beyond

3.57, where the system become chaotic. However the system is not chaotic for

all value of δ ∈ [3.57, 4], even there are some point in which it show three point

attractors.

3.2 Chaos-based Cryptography

It is difficult to stop an unauthorised user monitoring in the communication net-

work, used for satellite, mobile phones, and the internet. For the secrete commu-

nication over the public networks, certain cryptographic technique is used. In the
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content of security, videos and images are important in many applications such as

medical imaging, industrial imaging, military imaging systems, and private mul-

timedia messages.

Chaos theory plays an essential role to enhance the security of cryptosystem.

Chaotic systems and cryptographic technique methods have similar characteristics

such as sensitivity to changes in the parameters, unpredictability over long dura-

tions, and random-like behaviour [61–63]. However, relationship between crypto-

graphic methods and chaos based cryptography is essential [64]. In [64–67] the

differences between cryptographic methods and chaotic systems are shown in Ta-

ble 3.1.

Table 3.1: Comparison between cryptographic algorithms and chaotic systems

Properties of chaotic systems Properties of cryptographic scheme
Parameters (Real) Key (Boolean)
Sensitive to change the initial parameters Diffusion
Ergodicity Confusion
Iterations Rounds
Deterministic dynamical Deterministic Pseudorandom
Using set of real numbers Finite set of integers
Structure complexity Algorithm complexity

The difference between cryptographic system and chaotic is that, cryptographic

algorithms based on finite set of integers and chaotic system is defined on floating

points numbers [66]. The parameters of chaotic maps are valuable if they are real

numbers that may be utilised as encryption and decryption keys in cryptography

methods. In cryptographic scheme, if one bit change in plaintext/key change the

ciphertext throughout. In other side, iterations of chaotic systems are utilized to

expand the initial area in the chaotic systems. The aim of cryptographic proper-

ties (confusion/diffusion) is to complicate the relationship between secret message

and the key and also between the plain message. The chaotic property (sensitive

to initial condition) are close to the diffusion property of the encryption system

of cryptography. The ergodicity property shows that it is very hard to predict

the behavior of the system on the basis of initial conditions, similar to confusion

property of cryptography.
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3.3 Chaotic Maps

According to Alligood et al. [68], a chaotic map is a domain and a range function

in the same space, and the starting-point of the trajectory is the initial condition.

Chaotic dynamics have a unique features that can be seen clearly by imagining

the system starting twice under different initial conditions. Chaos theory tries

to explain the results of a system that is sensitive, complicated, and unexpected.

Chaotic dynamical systems enhance the communication security with higher di-

mensions and more than one positive Lyapunov exponent [69]. Lyapunov exponent

is help to select the initial parameters of chaotic maps that fall in chaotic areas. In

the study of dynamical systems, a chaotic system is the system that shows some

chaotic behaviour. Some chaotic maps are explain in this sections: Logistic map,

tent map and after that logistic and tent map is combine together that is called

tent-logistic map (compound map).

3.3.1 Logistic Map

The logistic map is a quadratic mapping (or recurrence relation). it is simple

non-linear dynamical map. The map was made popular in a study by biologist

May [70], in part as a discrete-time demographic model comparable to Pierre

Franois Verhulst’s logistic equation. One of the most well-known 1D chaotic maps

is the logistic map. It has simple mathematical structure but complicated chaotic

behaviour. Logistic map is defined as:

yn+1 = δ yn (1− yn) (3.1)

where δ is a system parameter with a value between δ ∈ [0, 4]. It is characterised,

when a small change occurs in the parameter δ it brings a change in the qualitative

behavior. Where yn has a value between 0 and 1 that indicates the current popu-

lation to the greatest population conceivable. The goal of this nonlinear difference

equation is represent two effects.
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• When the population size is modest, reproduction causes the population to

grow at a rate proportionate to the existing population.

• Starvation (density-dependent mortality), in which the growth rate is pro-

portional to the value derived by subtracting the theoretical “carrying ca-

pacity” of the environment from the present population.

The chaotic behavior of logistic map exhibits for δ ∈ [3.57, 4]. Figure 3.2 shows the

Lyapunov exponent of the logistic map. Figure 3.3 shows the bifurcation diagram

of logistic map, the horizontal axis depicts the values of the parameter δ while the

vertical axis shows the values of y.

Figure 3.2: Lyapunove exponent of logistic map

In Figure 3.4, the horizontal axies shows the values of yn and vertical axis shows

its frequency distribution.

Drawbacks:

In the logistic map, there are three flaws. One is that the system’s chaotic range

is restricted to δ ∈ [3.57, 4]. In side the given range [3.57, 4], few factors give rise

a change in the logistic map to behave in predictable manner. The non-unifrom

dispersal of the state value in the given range [0, 1], is another disadvantage. When

δ = 3.9, the logistic map shows aperiodic behaviour, according to the authors of

[71]. However, instead of utilising the range of 3.57 ≤ δ ≤ 4, the result of this
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Figure 3.3: Bifurcation diagram of logistic map

Figure 3.4: State distribution of δ

rang is to limited the key space. The logistic map’s application value is reduced

as a result of these flaws.

3.3.2 Tent Chaotic Map

A Tent map is an iterated function of a dynamical system governed by equation

(3.2) and exhibit chaotic behaviour. It has a similar shape to the logistic map. It

is another discrete 1D chaotic map. This chaotic map has tent-like shape in its

bifurcation diagram that is why its name is tent. The mathematical model of tent
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map is [33].

yn+1 =


δ

2
yn yn < 0.5

δ

2
(1− yn) yn ≥ 0.5

, (3.2)

where δ is a system parameter in the [0, 4] range. Figure 3.5 shows the bifurcation

diagram of tent map and Figure 3.6 depicts the state distribution of δ.

Figure 3.5: Bifurcation diagram of tent map

Figure 3.6: State distribution of δ

Drawbacks

In tent map, three defects have been discovered. The very first defect is the chaotic

range, which is specified in the system. Another defect is the irregular dispersal
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of the state value in the given range [0, 1]. It is also has a limited key space.

3.3.3 Tent-Logistic System

The new compound chaotic system citelu2019novel is obtained by combine the

logistic map (3.1) and tent maps (3.2), which is said to be tent-logistic system

(TLS). It is obtained to overcome the problem of tent and logistic maps. It has

the following mathematical model:

yn+1 =


4

9
(9− δ) yn (1− yn) +

2δ

9
yn, yn < 0.5

4

9
(9− δ) yn (1− yn) +

2δ

9
(1− yn), yn ≥ 0.5

(3.3)

where δ is a system parameter with a value between 0 and 9. When δ = 0 and

δ = 9, (3.3) degenerates into the chaotic logistic map and the chaotic tent map,

respectively. As a result, the finest logistic and tent maps may both be considered

special instances of (3.3).

Figure 3.7: Bifurcation diagram of tent-logistic map

Figure 3.7 depicts the TLS bifurcation diagram, which shows the chaotic range

covered the range [0, 9] and Figure 3.8 shows the state distribution diagram. Its

output sequences are evenly dispersed throughout the range of [0, 1] (see Figure
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Figure 3.8: State distribution of δ

3.8).

On comparing logistic/tent maps with Tent logistic map. The tent-logistic method

offers two benefits, first the chaotic range is greater than the logistic and tent maps.

If the system parameter δ is used as the secret key, the keyspace of a cryptosystem

employing the new compound system will be considerably increased. Second, the

output sequence by using the tent-logistic system is uniformly spread throughout

the whole value range between 0 and 1. On the basis of the benefits, the TLS is

more suitable for cryptography applications.

Proposition 3.3.1. For δ ∈ [0, 9], system (3.3) in all its range is a map

g : ym ∈ (0, 1) −→ ym+1 ∈ (0, 1)

1. Equation (3.3) degenerates to the chaotic logistic map when δ = 0.

gL : ym ∈ (0, 1) −→ ym+1 ∈ (0, 1)

2. Equation (3.3) degenerates to the chaotic tent map when δ = 9.

gT : ym ∈ (0, 1) −→ ym+1 ∈ (0, 1)
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3. When 0 < δ < 9 and yn < 0.5, then

g1[yn < 0.5] < g1[0.5] = 1.

4. When 0 < δ < 9 and yn ≥ 0.5, then

g2[yn > 0.5] < g2[0.5] = 1.

Proof. (1)

Set δ = 0 in Equation (3.3)

yn+1 =


4

9
(9− 0) yn (1− yn) +

2(0)

9
yn, yn < 0.5

4

9
(9− 0) yn (1− yn) +

2(0)

9
(1− yn), yn ≥ 0.5

yn+1 =


4

9
(9) yn (1− yn) +

0

9
yn, yn < 0.5

4

9
(9) yn (1− yn) +

0

9
(1− yn), yn ≥ 0.5

yn+1 =

(4) yn (1− yn) yn < 0.5

(4) yn (1− yn) yn ≥ 0.5

Now assume that δ = 4, then the above equation becomes the logistic system

yn+1 =

f1[yn] = δ yn (1− yn) yn < 0.5

f2[yn] = δ yn (1− yn) yn ≥ 0.5

both interval yn < 0.5 and yn ≥ 0.5, the Equation (3.3) gives the logistic map.

Proof. (2)

Set δ = 9 in Equation (3.3)

yn+1 =


4

9
(9− 9) yn (1− yn) +

2(9)

9
yn, yn < 0.5

4

9
(9− 9) yn (1− yn) +

2(9)

9
(1− yn), yn ≥ 0.5
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yn+1 =


4

9
(0) yn (1− yn) +

18

9
yn, yn < 0.5

4

9
(0) yn (1− yn) +

18

9
(1− yn), yn ≥ 0.5

yn+1 =

2 ynyn < 0.5

(1− yn)yn ≥ 0.5

here assume that δ = 2, its gives the tent map

yn+1 =

f1[yn] = δ yn yn < 0.5

f2[yn] = δ (1− yn) yn ≥ 0.5

Proof. (3)

When 0 < δ < 9 and yn < 0.5, the first part of system (3.3) is

g1[yn] =
4

9
(9− δ) yn (1− yn) +

2δ

9
yn

g1[yn] =
1

9
{(36− 4δ) (yn − y2(n)) + 2δ yn}

g1[yn] =
1

9
{36yn − 36y2(n)− 4δyn + 4δy2(n) + 2δyn}

g
′

1[yn] =
1

9
{36− 72yn − 2δ + 8δyn}

g
′

1[yn] =
1

9
{(36− 2δ)− (72− 8δ) yn}

if yn = 0.5 then,

1

9
{(36− 2δ)− (72− 8δ) yn} >

1

9
{(36y − 2δ)− (72− 8δ) 0.5}.

So that, g1[yn < 0.5] < g1[0.5] = 1.

Proof. (4)

When 0 < δ < 9 and yn ≥ 0.5, the second part of system (3.3) becomes,

g2[yn] =
4

9
(9− δ) yn (1− yn) +

2δ

9
(1− yn)

g2[yn] =
1

9
{(36− 4δ) (yn − y2(n)) + 2δ (1− yn)}
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g2[yn] =
1

9
{36yn − 36y2(n)− 4δyn + 4δy2(n) + 2δ − 2δyn}

g
′

2[yn] =
1

9
{36− 72yn + 8δyn − 6δyn}

g2[yn] =
1

9
{(36y − 6δ)− (72− 8δ) yn}

if yn = 0.5,then
1

9
{(36y − 6δ)− (72− 8δ) yn} ≤

1

9
{(36y − 6δ)− (72− 8δ) 0.5}.

So that, g2[yn > 0.5] < g2[0.5] = 1.

3.4 Approximate Entropy

There are a variety of methods for determining system complexity from time se-

quence.

Figure 3.9: State distribution of δ

Approximate Entropy [72] is one of the most well-known techniques. The tem-

poral sequence (time sequence) becomes more complicated as the approximate

entropy increases. To quantify the complexity of sequences generated by distinct

chaotic systems, the predicted entropy values of the sequence created by the three

chaotic maps (logistic, tent, and tent-logistic maps) are computed [36] and dis-

played in Figure 3.7 [36]. The estimated entropy levels of the sequence generated
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by the tent-logistic map are the greatest among the three chaotic maps in the

circumstances with the largest δ values. The sequence formed by the tent-logistic

map is verified to be more complex than the sequence generated by the tent and

logistic maps.



Chapter 4

Construction of S-box by Using

Tent-Logistic Map

S-box play an important role in cryptography. Recently a method for the con-

struction of strong chaotic S-boxes is proposed by Lu et al. [36]. In this chapter,

an S-box construction method by using compound chaotic map is discussed. The

introduction and the use of S-boxes is given in Section 4.1. The generation mech-

anism of S-box using a novel compound chaotic system (TLS) is presented in the

Section 4.2 and Section 4.3 is based on the performance evolution tests of S-box

by using SAMT (tool) on MATLAB.

4.1 Introduction of S-boxes

An S-box is the nonlinear component in block cipher system. In symmetric cryp-

tosystem, the use of S-box is very essential. It helps to convert the plaintext block

into ciphertext block, which may causes a confusion effect between plaintext and

ciphertext. A q × r S-box is described as:

S : [0, 1]q −→ [0, 1]r,

52
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where q is the input bit and r is the output bit. For the case when q = r the

data is neither compressed nor extended during the encryption transformation,

the S-box is completely rely on reversible transformation. Figure 4.2 depicts the

function and basic idea of q × r S-box.

Figure 4.1: Function and the basic principle of q × r S-box

Table 4.1: The matrix Sb of 8× 8 S-box

j/k 1 2 3 4 · · · 15 16
1 Sb(1, 1) Sb(1, 2) Sb(1, 3) Sb(1, 4) · · · Sb(1, 15) Sb(1, 16)
2 Sb(2, 1) Sb(2, 2) Sb(2, 3) Sb(2, 4) · · · Sb(2, 15) Sb(2, 16)
3 Sb(3, 1) Sb(3, 2) Sb(3, 3) Sb(3, 4) · · · Sb(3, 15) Sb(3, 16)
4 Sb(4, 1) Sb(4, 2) Sb(4, 3) Sb(4, 4) · · · Sb(4, 15) Sb(4, 16)
. . . . . · · · . .
. . . . . · · · . .
. . . . . · · · . .
. . . . . · · · . .

15 Sb(15, 1) Sb(15, 2) Sb(15, 3) Sb(51, 4) · · · Sb(15, 15) Sb(15, 16)
16 Sb(16, 1) Sb(16, 2) Sb(16, 3) Sb(16, 4) · · · Sb(16, 15) Sb(16, 16)

Where yi ∈ {0, 1}q, zi ∈ {0, 1}r and j = 1, 2, ..., n. The most common type of

S-box is an 8×8 matrix, which is notably used in digital image encryption systems
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[73]. The algorithm of an 8× 8 S-box is the subject of this work. An 8× 8 S-box

is a collection of numbers ranging from 0 to 255 that is represented by 16 × 16

matrix Sb(j, k), j, k = 1, 2, ..., 16 as illustrated in Table 4.1. There are a total of

(28!) various types of variation for 8 × 8 S-box. As a consequence, the simplest

8× 8 S-box is obtained by:

S[y] = Sb(j, k) = (j − 1)× 16 + k − 1. (4.1)

The process of converting input byte y into output byte z through an S-box with

matrix Sb is represented by the function S[y] as:
j = by/16c+ 1

k = mod(y, 16) + 1

z = S[y] = Sb(j, k)

(4.2)

where bcc is the floor function of c i.e., bcc returns the closest integer less than or

equal to c. The residual after dividing c by n is returned by mod(c, n), where c is

the dividend and n is the divisor.

Example 4.1.1. To find the element of S-box by using Equation (4.2) and (4.3).

an input bit y = 55 is considered, it is used in Equation (4.3)

j = b(55/16)c+ 1

j = 3 + 1 = 4

k = mod(55, 16) + 1

k = 7 + 1 = 8

Put j = 4 and k = 8 in Equation 4.2

Sb(4, 8) = 55 Consequently,

z = S[y] = Sb(j, k) = 55
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z = Sb(4, 8) = 55.

Similary the method is performed to obtain all the elements of S-box.

It is an easy way to find a simple 8×8 S-box. S[0] = Sb(1, 1) = 0, S[1] = Sb(1, 2) =

1, ..., S[255] = Sb(16, 16) = 255. In z = S[y] = y, It is self-evident. The simple

8 × 8 S-box does not change any input value after applying, therefore it can not

used in the encryption system. The inverse transformation is defined as:

y = S−1[z],

in the decryption method. The S−1[z] is determine by:

y = S−1[z] = (j − 1)× 16 + k − 1. (4.3)

4.2 The Proposed S-box Generation Algorithm

Many researchers [15–17] have proposed the design approaches of S-boxes gen-

eration with various cryptographic strengths. However, because most of these

approaches are complicated and inefficient that is time consuming. Lu et al. [36]

proposed a novel S-box generated method by using the compound chaotic map and

novel linear mapping. This approach takes advantage of the tent-logistic map have

strong chaotic properties. The algorithm for creating S-box is explained below.

Algorithm 4.2.1.

Input: Chaotic map (3.3), initial parameters y0, control parameter δ, integer

L = 65536 and c > 0 .

Output: S-box.

Step 1: Take an integer c, s.t c > 0 and c 6= k × 257 where k = 1, 2, · · ·

Step 2: Initiate an array D as D = [0, 1,· · · , 255] .

Step 3: Use the following linear mapping to generate a new array Ei:

Ei = c× (D(i− 1) + 1) mod 257, i = 1, 2, · · · , 256 (4.4)
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Step 4: Transform 1D array Ei into 2D array Eb1 and consider Eb1 as a initial

S-box.

Step 5: Use the tent-logistic map (3.3), with the control parameters δ, initial

parameter y.

Step 6: Iterate (3.3) L-times, to create a chaotic sequence of length L.

Step 7: To remove the transient effect, discard the first (L-256) numbers of the

chaotic sequence, then create a new chaotic sequence of length 256, which is rep-

resented by Y.

Step 8: Sort the chaotic sequence Y, after that generate a positive index array F

and F = {F (1), F (2), . . . , F (256)}. Due to chaotic behaviour they will ultimately

lead to F (i) 6= F (j) as long as i 6= j.

Step 9: Calculated 1D array B1 by using the index array F .

Step 10: The suggested S-box is created by transforming the 1D array B1 into a

2D matrix Sb.

The implementation of Algorithm 4.2.1 is performed on the PC with MATLAB

R2017a having operating system window 8.1 pro 64 bit, Core i5-4300M with 2.60

GHz CPU and 8GB Ram. Using the parameters y0 = 0.66, δ = 4.5, c = 56,

L = 65536 on MATLAB. The constructed S-box is shown in Table 4.2.

Table 4.2: S-box.

85 22 149 69 231 165 224 83 207 54 232 188 200 43 211 16
239 253 215 3 31 199 1 237 70 139 78 161 55 51 99 123
61 63 245 97 137 48 67 59 4 92 154 121 66 136 57 74
86 88 169 23 52 40 204 112 98 173 32 250 0 30 5 252
240 75 223 254 44 192 210 183 35 81 234 19 228 230 71 21
62 124 203 37 106 179 56 131 24 235 80 145 28 151 208 95
87 115 209 26 125 104 201 146 157 249 91 130 49 217 202 8
114 186 14 226 116 42 167 20 255 160 138 182 41 158 222 12
185 17 72 64 187 50 196 251 118 219 53 111 39 247 168 147
177 143 6 172 120 135 141 122 127 33 45 263 47 171 244 132
133 164 10 248 18 29 15 162 108 155 107 82 193 225 214 176
148 198 58 159 144 229 73 189 46 90 126 174 109 25 102 184
13 191 100 218 129 150 94 101 38 79 117 93 180 36 190 113
9 178 212 89 181 216 7 213 27 233 156 140 128 2 197 60

241 103 242 152 110 246 11 243 227 153 34 195 119 68 163 238
96 134 206 76 194 170 175 221 65 77 220 166 105 205 142 84



Construction of S-box 57

4.3 Performance Tests

The properties of constructed S-box in Table 4.2 is performed by using the software

tool (MATLAB). Some cryptographic properties such as SAC, BIC-SAC, BIC-NL,

and nonlinearity are briefly describe and some properties are also given which is

described in Chapter 2 is presented in this section.

4.3.1 Strict Avalanche Criterion

SAC [12], is an essential component for cryptographic S-box. This criterion indi-

cates, if one input bit is change then in the result of each output bit is changed

with the probability 0.5. The probability of P (j, k) is 0.5 for each jth and kth,

where jth is input bit and kth is output bit, j, k = 1, 2, · · · , n. In order to fulfill

the requirement, the Boolean function must be 50 percent dependent on each of

its input bits. The values of SAC of S-box rely on the dependency matrix. Table

4.3 shows the dependency matrix of the constructed S-box 4.2 for SAC. The value

of jth row and kth column of the table shows the P (j, k) values. The values of

P (j, k) shows that the constructed S-box is close to 0.5.

Table 4.3: Dependency matrix of S-box for (SAC)

j/k 1 2 3 4 5 6 7 8
1 0.5625 0.5781 0.5313 0.5625 0.5313 0.4063 0.5156 0.4219
2 0.4688 0.6250 0.4531 0.5469 0.5313 0.4844 0.5625 0.5781
3 0.5156 0.3906 0.5000 0.5000 0.5000 0.4375 0.5156 0.4531
4 0.5156 0.4531 0.5313 0.5313 0.5625 0.4375 0.4531 0.4688
5 0.4688 0.4688 0.5000 0.5156 0.5156 0.4844 0.4688 0.4063
6 0.4219 0.5000 0.5000 0.4531 0.5156 0.5156 0.5313 0.5000
7 0.5000 0.5156 0.5625 0.4531 0.4375 0.4844 0.4219 0.4219
8 0.5156 0.5313 0.4063 0.5000 0.5313 0.5625 0.4844 0.5156

4.3.2 Bit Independence Criterion for SAC

In accordance with the Bit Independence Criterion (BIC) [15] criteria, the ith and

jth bit of the data block changes independently, when the kth bit of the data block

is altered. This means that the output bit value of S-box and the input bits are
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changed without disturbing each other. To determine this property of S-box, the

BIC-SAC is introduced. The result of BIC-SAC is determine by:

(Si[y]⊕ Sj[z]− Si[y]⊕ Sj[y]), ∀ y ∈ {0, 1, ..., 255},

where y and z are one bit different each time. If the average of BIC-SAC is close

to 0.5, then any S-box meet this property. The results of BIC-SAC for constructed

S-box 4.2 is given in Table 4.4. According to the results, the constructed S-box

satisfied the requirements of BIC-SAC.

Table 4.4: BIC for SAC

Boolean
Function

S1 S2 S3 S4 S5 S6 S7 S8

S1 0 0.4785 0.4707 0.4941 0.5098 0.4902 0.5137 0.5117
S2 0.4785 0 0.5215 0.4902 0.5254 0.5039 0.4902 0.5098
S3 0.4707 0.5215 0 0.5215 0.4980 0.4961 0.4980 70.5020
S4 0.4941 0.4902 0.5215 0 0.4727 0.4941 0.5117 70.4961
S5 0.5098 0.5254 0.4980 0.4727 0 0.4766 0.5156 0.5098
S6 0.4902 0.5039 0.4961 0.4941 0.4766 0 0.4805 0.5059
S7 0.5137 0.4902 0.4980 0.5117 0.5156 0.4805 0 0.4941
S8 0.5117 0.5098 0.5020 0.4961 0.5098 0.5059 0.4941 0

4.3.3 Bit Independence Criterion for Nonlinearity

Bit independence criterion for nonlinearity (BIC-NL) is another important feature

for the strong S-box. To find the results of BIC for nonlinearity, compute the

nonlinearity values of all output bit values by (yi ⊕ yj), where i, j = 1, 2, ..., n

and y ∈ {0, 1, ..., 255}. The results of BIC-NL represented in Table 4.5, shows

the average value is 104 so the constructed S-box 4.2 satisfied the BIC-NL and

S1, S2, . . . , S8 is the Boolean functions of S-box.
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Table 4.5: BIC-NL

Boolean
Function

y1 y2 y3 y4 y5 y6 y7 y8

y1 0 102 104 104 104 104 104 102
y2 102 0 100 104 104 100 102 104
y3 104 100 0 102 102 104 106 100
y4 104 104 102 0 104 106 102 104
y5 104 104 102 104 0 104 96 106
y6 104 100 104 106 104 0 106 102
y7 104 102 106 102 96 106 0 104
y8 102 104 100 104 106 102 104 0

4.3.4 Nonlinearity

An S-box may alternatively be represented in nonlinear format as:

z = z1, z2, · · · , zn = S[t] = S1[t], S2[t], · · · , Sn[t] (4.5)

where zj = Sj[t] ∈ {0, 1} , Sj[t] is an n-bit Boolean functions with j = 1, 2, · · · , n

and y is the input bit. To reduce cryptographic attacks, an S-box should have a

high nonlinear relationship between input/output values. The nonlinearity (NL)

of Boolean functions Sj[t] is used to measure the nonlinear strength of an n × n

S-box, which is computed as:

(NL)j =
1

2
(2n − max

t∈{0,1}n

∣∣∣WS − Sj[t]
∣∣∣). (4.6)

Here, WS−Sj[t] denotes the Walsh spectrum of function Sj[t], which is computed

as:

WS − Sj[t] =
∑

u∈{0,1}n

(−1)Sj [t]⊕t.u, (4.7)

where t · u is the dot product of t and u, computed as follows:

t.u = (t1 × u1)⊕ (t2 × u2)⊕ . . .⊕ (tn × un).

(4.8)

Where ⊕ refers to the XOR of modulo 2. In an S-box, (NL)j is the nonlinearity

value of the jth constituent of Boolean function. The higher the NL, better the
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performance against linear cryptanalysis. Table 4.6 shows the NL values of all

eight component Boolean functions in the proposed S-box. The average value of

nonlinearity is 105.2500, with a minimum of 102, a maximum of 108. Table 4.6

also shows the nonlinearity values of the initial S-box (sI), which are significantly

lower than the nonlinearity values of the final S-box (sF ). The results shows that

the nonlinearity of final S-box is enhanced by using the pseudo random chaotic

sequence of initial S-box, where the si shows the number of Boolean functions of

S-box and i = 1, 2, . . . , 8.

Table 4.6: NL of Boolean function of the generated S-box

si s1 s2 s3 s4 s5 s6 s7 s8 Average
sI 54 54 54 54 54 54 54 54 54
sF 108 106 106 106 108 102 102 104 105.2500

4.3.5 Linear Probability

High confusion and diffusion effects ensure the security of a cryptosystem. S-

boxes helps to achieve cryptosystems, considerable confusion/diffusion effects by

providing a nonlinear mapping between input/output data. When the nonlinearity

of S-box is increase then it is hard to cryptanalysis attack. LP is used to compute

the resistance of linear cryptanalysis, which is estimated as:

LP = max
αy ,βy 6=0

∣∣∣P{y ∈M |y.αy = S(y).βy}
2n

− 1

2

∣∣∣ (4.9)

where M = 0, 1, ..., 255, αy and βy are the respective input, output bits (αy ∈

M,βy ∈M), ‘.’ represents the dot product and P{y ∈M |Y } denotes the number

of y that fulfills the condition Y . Maximum LP of suggested S-box is just 0.125,

indicating that it is resistant to linear cryptanalysis.

4.3.6 Differential Probability

Another successful approach for deciphering ciphertext is differential cryptanalysis

[74]. This approach is used to discover plaintext pairings with the same differentials

as their associated ciphertext pairs. Attackers can get a portion of the key by
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using these plaintext pairings and matching ciphertext pairs. Performance against

differential cryptanalysis is measured using the DP, which is computed as follows:

DP = max
∆y 6=0,∆z

(P{y ∈M |S(y)⊕ S(y ⊕∆y) = ∆z}
2n

)
(4.10)

where ∆y = y ⊕ y′ and ∆z = z ⊕ z′ are differentials corresponding to the input

(y, y
′
) and output (z, z

′
) pairs. An S-box with a lower DP can withstand differ-

ential cryptanalysis better. DP value of generated S-box is 0.039. Because of the

small value, the recommended S-box is very resistant to differential cryptanalysis

attacks.

4.3.7 Others Properties of S-box

Here the result of some other properties of proposed S-box. These properties are

briefly described in Chapter 2.

• S-box is bijective.

• The number of fixed point and opposite fixed point of S-box is 3.

• Nonlinearity of constructed S-box is 108.

• Dynamic distance of all Boolean functions of S-box is defined in the table

below.

S1 S2 S3 S4 S5 S6 S7 S8

8 10 4 8 4 12 2 10

4 16 6 6 4 2 8 10

2 14 0 0 0 8 2 6

2 6 4 4 8 8 6 4

4 4 0 2 2 2 4 12

10 0 0 6 2 2 4 0

0 2 8 6 8 2 10 10

2 4 12 0 4 8 2 2
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• Perfect nonlinearity (PN) value of all Boolean functions of S-box (si) are

given below:

si s1 s2 s3 s4 s5 s6 s7 s8

PN 148 128 112 124 132 120 116 132

• Avalanche Criterion Percentage of S-box is 59.3750.

• Desired SAC value of S-box is 1024.

• Results for the Boolean functions which satisfy Avalanche criterion is 38.

• Sum of Squares Indicator of Boolean functions of S-box (si) are:

si s1 s2 s3 s4 s5 s6 s7 s8

SSI 167296 172672 176896 169984 176896 208000 206848 197632

• Absolute Indicator (AI) of Boolean functions of S-box (si) are:

si s1 s2 s3 s4 s5 s6 s7 s8

AI 64 64 64 56 72 80 64 64

• Bent nonlinearity value of S-box is 116.6863.

• Dynamic Distances (DDF) of Boolean functions of S-box (si) are:

si s1 s2 s3 s4 s5 s6 s7 s8

DDF 10 16 12 8 8 12 10 12

• Differential Branch Number of S-box is 3.

• Hamming weight (HW) of all Boolean functions of S-box are given below:

Si S1 S2 S3 S4 S5 S6 S7 S8

HW 128 128 128 128 128 128 128 128
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4.3.8 Performance Comparison

Cryptographic performance of generated S-box is compared with some recently

suggested S-boxes. Table 4.7 & 4.8 shows the different performance analysis results

of S-boxes.

Table 4.7: Comparison of chaotic S-boxes

S-boxes SAC NL BIC-SAC BIC-NL LP DP

Min Max Avg

Zahid. [75] 0.507 104 108 106.8 0.507 103.9 0.140 0.054

Belazai et al. [27] 0.496 102 108 105.3 0.499 103.8 0.156 0.039

Khan et al. [76] 0.502 102 108 103.5 0.501 103.0 0.133 0.039

Rijindal. [77] 0.504 112 112 112 0.504 112 0.062 0.016

SI 0.495 54 54 54 0.501 77.1 0.289 1.000

SF 0.495 102 108 105.25 0.499 104 0.125 0.039

Table 4.8: Comparison of non-chaotic S-boxes

S-boxes SAC NL BIC-SAC BIC-NL LP DP

Min Max Avg

Cavusoglu et al. [22] 0.520 104 110 106.3 0.501 104.2.8 0.133 0.039

Wang et al. [78] 0.495 104 110 106.5 0.498 103.8 0.141 0.039

Liu et al. [14] 0.498 102 108 104.5 0.508 104.6 0.125 0.047

Lambic. [24] 0.503 106 108 106.8 0.502 103.8 0.133 0.039

D.Lambic [25] 0.501 108 112 109.3 0.506 108.2 0.094 0.031

SI 0.495 54 54 54 0.501 77.1 0.289 1.000

SF 0.495 102 108 105.25 0.499 104 0.125 0.039

From Table 4.7 & 4.8, it is clear that the generated S-box has a smaller values of

LP and DP than other S-boxes. This comparison demonstrate our method give

good performance. SAC value of the constructed S-box is 0.505, which is quite

near to the ideal SAC value (0.5). The suggested S-box, BIC value is fairly well. It

is noticed that the initial S-box that is generated by linear mapping (4.4) has low

nonlinearity and the nonlinearity of final S-box is increased that is constructed by

using compound chaotic map (3.3).
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Conclusions

In this thesis, the compound chaotic system and the linear mapping is used for

the construction of S-box. The innovations of this work are as follows:

• The S-box is constructed by using a simple and effective method. The initial

S-box is obtained by using a linear mapping (4.4). After that, TLS (3.3) is

used to scramble the initial S-box and obtain final S-box.

• The constructed S-box has small value of linear probability (LP) and differ-

ential probability (DP) than the some old S-boxes, so the suggested S-box

strongly resists differential cryptanalysis attacks and linear cryptanalysis.

SAMT [55] tool is used for the test analysis of the S-box. In comparison to

previous S-boxes, the created S-box has extremely small values of LP and DP and

a good average value of nonlinearity, according to the test results and performance

analysis. This indicates that the suggested S-box is resistant to both linear and

differential cryptanalysis and can be used in the block cryptosystem.

As a future work, it is possible to optimized this S-box applying metaheuristics,

similarly optimazition performed by continous chaotic map. The proposed S-

box can be used in designing the image encryption schemes. By using the same

algorithm S-box can be designed by using hyper chaotic maps. It may increase

the nonlinearity and effectiveness of S-box.
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